
Spring 2015 Lab2_ET438B.docx

EET 438B

Sequential Control and Data Acquisition

Laboratory 2

Programming Advanced Control Structures in LabVIEW

Laboratory Learning Objectives

1. Use the Palettes of the LabVIEW programming environment to efficiently produce programs

2. Use the program debugging tools to monitor program execution and variable values.

3. Insert text-based program code into a LabVIEW program using formula nodes.

4. Utilize the Help menu to gain knowledge of instructions and find code examples.

5. Create programs using logic tests that implement on/off control.

6. Explain how a state machine operates using WHILE and CASE structures in LabVIEW.

7. Write a program that implements a control sequence utilizing logical testing and a simple

state machine structure.

Theoretical Background

Computerized control systems need to make logical decision regarding input variables and

execute complex control programs. On/off controllers, such as thermostats, use either hardware

or software implementations of comparators. These devices compare an input value to a

predetermined set point value and produce a logical output. The output is a voltage value for

hardware implementations and a Boolean value for the software versions. Comparators types

include inverting, non-inverting with or without hysteresis and window comparators.

Comparators with hysteresis make output changes based on the previous output state along with

the current input level.

A state machine is a software structure that can handle complex control problems by dividing the

control actions into a sequence of events. The sequence of events may execute in a specific

order based on the inputs to the system or randomly based on user interface actions. In either

case, the state machine provides a powerful tool for implementing computerized control actions.

Comparator Circuits and Software Realizations

OP AMPS without feedback are one type of hardware-based comparator. There are also

dedicated hardware devices that provide comparator functionality. Figure 1 shows inverting and

non-inverting voltage comparators implemented using OP AMPs. The accompanying

input/output diagrams show their functionality.

The inverting comparator implements the following logic in hardware.

satOrefin

satOrefin

VV ,VV

VV ,VV

The open loop OP AMP circuit amplifies the voltage difference between the + and - terminals

with a very high gain. When the value of Vin in just slightly less (1-2 mV) than Vref , a positive

Spring 2015 2 Lab2_ET438B.docx

difference occurs and the amplifier output rises to its positive saturation voltage. This is

approximately +Vcc-1.5V for most common OP AMP circuits. When Vin is above Vref then the

output goes to the negative saturation voltage of -Vcc+1.5V typically. The transition from

positive to negative output levels signifies that the input level is above the reference level. A

voltage divider or a Zener diode can produce this reference level in practice.

-

+

Vo

Vin

Vref

+Vcc

-Vcc

Inverting

Comparator

-

+

Vo

Vref

Vin

+Vcc

-Vcc

Non-Inverting

Comparator

Vin

+Vsat

-Vsat

Vref

Vin

+Vsat

-Vsat

Vref

 Figure 1. OP AMP Implementations of Voltage Comparators Along With Input/Output Responses.

The non-inverting comparator implements the logic below, which is the inverse of the inverting

device.

satOrefin

satOrefin

VV ,VV

VV ,VV

For this circuit, the transition from the lowest voltage to the highest indicates an input value

greater than the reference value.

A logical test of the input using the comparison operators in LabVIEW produces that same result

as the OP AMP hardware implementation. The LabVIEW program in Figures 2 and 3 show how

to create non-inverting and inverting comparator action using a Boolean output and two

numerical controls.

Spring 2015 3 Lab2_ET438B.docx

 Figure 2, Non-Inverting Comparator In LabVIEW.

 Figure 3, Inverting Comparator In LabVIEW.

 Simple comparators can detect voltage levels, but are susceptible to spurious changes due to

input noise or slight changes of input near the set point. Comparators with hysteresis reduce

false output changes due to noise by adding a range of insensitivity to the comparator. This

range is called deadband. In the hardware implementation using OP AMPs, the circuit feeds

back a portion of the output to the reference input, which produces two transition points that

depend on the input and the last output value. Figure 4 shows an inverting comparator with

hysteresis. The values of resistors R1 and R2 determine the amount of dead band. The difference

between the lower trip point voltage, VLTP and the upper trip point voltage, VUTP is the hysteresis

or dead band of the comparator.

-

+

Vo
Vin

Vref

+Vcc

-Vcc

R2

R1

Vin

+Vsat

-Vsat

VLTP

VUTP

 Figure 4. Inverting Comparator With Hysteresis,

Spring 2015 4 Lab2_ET438B.docx

Equations (1) and (2) give relationships for finding the values of VUTP and VLTP with specified

resistor values.

2R1R

2R
V

2R1R

1R
VV refsatUTP (1)

2R1R

2R
V

2R1R

1R
VV refsatLTP (2)

Where: +Vsat = positive saturation voltage of OP AMP,

 -Vsat = negative saturation voltage of OP AMP, May be zero.

 Vref = comparator reference voltage.

Taking the difference between the trip point voltage equations gives an equation for finding the

hysteresis voltage. Equation (3) shows this formula.

2R1R

1R
V2V sath (3)

Where: Vh = the hysteresis voltage value (VUTP-VLTP)

Specifying a value of hysteresis voltage, a saturation voltage and a value of R1 in (3) determines

the value of R2 in a design. These values can then be used in (1) along with a specified value of

upper trip point voltage to find the reference voltage required.

Software realizations of comparators with hysteresis are possible but require the storage of the

previous state of the comparator's output. A software implementation must satisfy the following

logical expressions.

alseFY),rueT(Y AND LTP)(X

TrueY False),(Y AND)UTPX(

-

-

 and LTP = UTP-h

Where: X = the comparator input variable

 Y= the comparator output variable

 Y
’
=the previous output of the comparator

 UTP = comparator upper trip point value

 LTP = comparator lower trip point value

 h = value of hysteresis

A WHILE loop that uses a shift register will provide previous output state storage for the

software implementation of the comparator with hysteresis.

Spring 2015 5 Lab2_ET438B.docx

Figure 5 shows the block diagram of an inverting comparator with hysteresis created in

LabVIEW. The comparator tests the input, X in, against the value of UTP modified by the

hysteresis value, h. The comparator output, Y, is TRUE when the inequality is satisfied and the

shift register saves it for further use. A TRUE output lights the indicator LED that is also the

comparator output. On the next iteration of the loop, the previous value of Y is inverted and

converted to an integer value of 0. This multiplies the value of hysteresis, which is then

subtracted from the UTP value. As long as the comparator output remains TRUE, the UTP value

remains unchanged since zero multiplies the value of hysteresis. When the input exceeds the

UTP, the logical test X≤UTP returns a FALSE, extinguishing the indicating LED. On the next

loop iteration, the shift register saved Y=FALSE that is then inverted and converted to a numeric

value of 1. This causes the hysteresis value to be subtracted from the UTP giving the LTP. The

LTP is now used to test the X in value. This implementation also displays the trip point value on

the front panel so the change in trip point is visible while the program is running.

The comparator code inside the loop can be used in another program but the program must

include a loop so the previous the value of output is available.

 Figure 5. Block Diagram of an Inverting Comparator With Hysteresis.

Window comparators detect a range of input values between lower trip and upper trip points. It

can also detect when an input is in one of three ranges of input defined by the lower and upper

trip points. Figure 6 shows the input/output diagram and a schematic diagram for a window

voltage comparator constructed using OP AMPs and a logic gate. The circuit consists of

Spring 2015 6 Lab2_ET438B.docx

VUTP

+Vsat

-Vsat

VLTP

 Detected

Window -

+

Vou1

Vin

VLTP

+Vcc

-Vcc

U1

-

+

Vou2

VUTP +Vcc

-Vcc

U2

Vou1 Vou2

Vo

Vo CMOS NOR

 Figure 6. Window Comparator With Input/Output Diagram.

of U1, an inverting comparator, U2 a non-inverting comparator and a CMOS NOR gate. The

comparators U1 and U2 share a common input voltage. The output of U1, Vou1 remains high as

long as the input in less than VLTP. The output of U2 , Vou2 transitions from low to high at VUTP.

The range between the trip voltages of both devices defines the detection window. A CMOS

NOR gate logically adds the outputs of U1 and U2 resulting in the input/output response. Table

1 shows the output logic for all possible combinations of comparator input.

 Table 1 Window Comparator Logic

Condition Vou1 Vou2 Desired

Output

Vou1 Logic

Level

Vou2 Logic

Level

NOR

Logic

VLTP<Vin<VUTP -Vsat -Vsat Vo 0 0 1

Vin≥VUTP -Vsat +Vsat 0 0 1 0

Vin≤VLTP +Vsat -Vsat 0 1 0 0

Not Possible +Vsat +Vsat 0 1 1 0

Connecting outputs Vou1 and Vou2 to other circuits along with the overall output will allow the

circuit to detect three ranges determined by the upper and lower trip point values.

A software implementation of the window comparator uses two logical tests to define the

detection window. Figure 7 show the block diagram of a LabVIEW program that produces

window comparator functionality. The Vin≤LTP test simulates the action of U1 in the hardware

and the Vin≥UTP the action of U2. The logic function combines the two outputs to only register

when the input is between the two set points. Having LTP>UTP prevents proper operation.

Figure 8 show the program that detects the three ranges defined by the two set points. Adding

indicators to the greater/less than outputs displays when the input is within each range.

Spring 2015 7 Lab2_ET438B.docx

 Figure 7. Window Comparator Logic Programmed In LabVIEW.

 Figure 8. Window Comparator With Upper and Lower Range Indication Implemented Using LabVIEW.

State Machines

Complex sequential processes lend themselves to automation using computer-based control.

These processes can be as simple as the control timer on a home washing machine or clothes

dryer or be a multistage articulated robotic arm in an industrial plant. The systems both require

control structures that produce a structured program. The state machine is a programming

structure that is ideally suited for these applications and many others. This programming tool

also finds application in programming user interfaces where a number of actions can occur

randomly based on user interaction with the program.

Spring 2015 8 Lab2_ET438B.docx

The key characteristic of state machine systems is that the underlying process must have

discernible steps or stages or the system must respond to events occurring randomly outside the

program. This last case occurs in user interface design.

Three parts make up a typical state machine program structure. Figure 9 shows a block diagram

of the major sections of a state machine program. A state machine program begins with an

Program

Initialization

Process

States

Input data

Process data

Output data

Up date state variable

Program

Terminaltion

Process

 Figure 9. Overall Structure of a State Machine Program

initialization routine. This section of code defines the program variables and set the starting

values. This code only executes once when the program starts. The most important action of

this program section is that the state variables are set to their initial values correctly. A state

variable is a variable that indicates the current and future states of the program. Changing the

state variable moves the program through a sequence of steps in which different sections of code

executes. The actions of a typical initialization routine include:

1. Initialing state variable

2. Setting all outputs to a starting value

3. Updating state variable to move to next state

The initialization process may include placing the program into an idle state to wait for user or

system input before further action takes place. The program will execute the code in the idle

state until other inputs enter the program. An idle state in not necessary in all state machine

designs but is typically seen in user interface construction.

A state machine program enters into state processing after completing the initialization code.

States are the individual stages or steps in a process. Lighting a pattern of LED in a specified

order can be programmed using a state machine. Each LED pattern would represent a state in

the program code. Programmers should define the states using meaningful descriptions before

beginning the coding process. Using integers in the program to define the state is the simplest

way to code the stages into the state machine. Figure 10 shows a graphical way to design a state

machine prior to coding it. This figure is called a state diagram. The state diagram shows how

the stages proceed through the process and how the variable, I, controls the interaction between

the states.

Spring 2015 9 Lab2_ET438B.docx

S0

I=0
Initalization

I=1
S1

Idle

State
I=1

I=2
S2

I=2

I=1

S3

I=3

I=1

I=3
Sn

I=n

I=n

Sn+1

I=
n+

1

Termination

Process

I=1

 Figure 10. State Diagram Showing Integer State Variable and Interactions

The circles in the diagram represent the program states. These states map to descriptions of the

state function. For example, the state S2 may represent a tank fill stage in a more complex

process. The arrows indicate the direction process action takes with the state variable I

representing state variable value necessary to enter the next program state. If the state variable

remains unchanged the program repeats the code used to define the actions of a state. The loop

back arrows in the diagram represent this activity. The process may require the program to jump

between states. The arrows in the state diagram that point back to the idle state represent this

action. The code in each state may include:

1.) Reading inputs

2.) Performing calculations based on inputs and current values

3.) Update output

4.) Modify state variable to continue program processing

The final section of the state machine is the termination routine. This code executes only once in

the program before the program ends. The state Sn+1 represents this action in the state diagram

of Figure 10. The state machine code will update all output to final values, save all data and

program conditions, and perform an orderly and safe process shutdown before ending program

execution.

Figure 11 gives the pseudo code for the state diagram in Figure 10. The structure of a state

machine uses two fundamental programming constructs: the WHILE loop and the CASE

statement. Repeated IF-THEN statements can take the place of a CASE (SWITCH in C)

statement. The basic function of the state machine code is to have only one section of

instructions execute with the state variable being the determining variable. The pseudo code in

Figure 11 shows the state machine implemented using IF-THEN statements with tests for each

value of the state variable.

Spring 2015 10 Lab2_ET438B.docx

 Figure 11. Pseudo Code for a State Machine

Begin

I=0 //initialize the state variable to enter state 0
// Place other initialization instructions here
I=1 // now increment the state variable and move to the while loop
WHILE I<>n+1 //repeat this loop until the program ends
//The following section contains state 1
IF I=1 THEN
//state 1 instructions go here
// read inputs, do processing, update state variable
// this code changes state variable based on some code test
IF TEST THEN
 I=2 //move to next state if TEST=true
ELSE
 I=1 //return to idle if TEST=false
ENDIF
END IF // This ends state 1 code section
IF I=2 THEN
//state 2 instructions go here
// read inputs, do processing, update state variable
// this code changes state variable based on some code test
IF TEST THEN
 I=3 //move to next state if TEST=true
ELSE
 I=1 //return to idle if TEST=false
ENDIF
END IF // This ends state 2 code section
IF I=3 THEN
//state 3 instructions go here
// read inputs, do processing, update state variable
// this code changes state variable based on some code test
IF TEST THEN
 I=n //move to next state if TEST=true
ELSE
 I=1 //return to idle if TEST=false
ENDIF
END IF // This ends state 3 code section
IF I=n THEN
//state n instructions go here
// read inputs, do processing, update state variable
// this code changes state variable based on some code test
IF TEST THEN
 I=n+1 //move to next state if TEST=true
ELSE
 I=1 //return to idle if TEST=false
ENDIF
END IF // This ends state n code section
END WHILE //this is the end of the WHILE loop
Save program data
Save program conditions
END //program

Spring 2015 11 Lab2_ET438B.docx

The pseudo code begins with initialization statements. The state variable, I, is updated to 1 as

this section ends. The program then enters a WHILE loop with the exit condition set to the value

of the termination state. The program will stay in this loop and execute the IF-THEN statements

based on the value of the state variable. There is a section in each state’s IF-THEN statement for

the instruction necessary to process the action of the state followed by a test to determine if the

code should jump back to the idle state or continue to the next stage of the process. If in the n-th

state the test indicates the state variable should be updated to n+1, then the WHILE loop ends

and the termination process code begins. This section of code handles saving program data and

conditions and ends the program.

The CASE structure makes the code clear and simple. The CASE statement allows use of any

data type, not just a Boolean as the decision variable. The simplest method is to let I be the

CASE variable with the data type defined as integer.

Figure 12 shows a state machine template implemented in LabVIEW. This code makes use of

the shift register to save the value of the state variable at each WHILE loop iteration. The CASE

statement has five integer choices that represent the initialization process the active states and the

termination process. The program initializes the state variable to zero. On the first iteration of the

loop, the program enters state zero and would run any code place inside the CASE statement.

Once completed the state variable is set to 1 and saved in the shift register. On the next iteration

the CASE statement will enter the “1” case and execute the code written in the pane. Case 5 is

the termination process. When the program enters this state, the code executes and saves all data

and program variables. The case 5 code then increments the state variable to 6 which is a stop

condition for the WHILE loop. A stop button can also end the program but would bypass the

termination process code.

 Figure 12. State Machine Template in LabVIEW.

Spring 2015 12 Lab2_ET438B.docx

Procedure

1.) Follow the link below to NI video training modules and review the these topic links:

Execution Structures and Passing Data Between Loop Iterations. https://www.ni.com/getting-

started/labview-basics/ . View the supplemental videos on creating state machines and using

logic functions for control applications.

2.) Using the equations found in this lab handout, design an inverting comparator with hysteresis

assuming that following values:

 OP AMP: LM741

 Vsat = 13.5 V

 ±Vcc=15 V

 Vh = 0.75 V

 VUTP = 5 V

 R1 = 1 kΩ

Compute the values of R2 and Vref to satisfy these design specifications. Show all

calculations in a neat and organized way and save this work for later submission. Using a

circuit simulator (e.g. Circuitmaker, Multisim, LTSpice) verify the circuit operation by

running a transient analysis using a triangle wave. (See videos in D2L on using software)

Verify the operation for both increasing and decreasing values of Vin to test the upper and

lower trip point values. Printout the schematic and the circuit simulations and save them for

later submission.

3.) Create a LabVIEW program that implements the hardware comparator designed in step 2

above. Verify operation with the lab instructor and printout both the front panel and block

diagram for later submission.

4.) Create a state machine program in LabVIEW that will count 0-9 and repeat on a simulated

seven segment display. There should be a 1 second delay between displayed counts. Pressing

a stop button should end the counter operation and the program. Start the program using the

template file located in D2L under Lab 2 materials. Figure A-1 in the appendix show a

typical pinout for a hardware 7-segment display. Demonstrate the program operation to the

lab instructor and print the front and back panels to document your work.

5.) Write at short report (3-4 pages double spaced) on how the state machine in 4 operates.

Explain how each part of the program works and what each symbol of the block diagram

represents.

Lab 2 Assessment

https://www.ni.com/getting-started/labview-basics/
https://www.ni.com/getting-started/labview-basics/

Spring 2015 13 Lab2_ET438B.docx

Complete and submit the following items for grading and perform the listed actions to complete

this laboratory assignment.

1.) Complete the online quiz over Lab 2 theory.

2.) Submit the calculations and simulations from the hysteresis comparator hardware design.

3.) Submit front and back panel printouts of LabVIEW software hysteresis comparator program

4.) Printouts of the front panel and block diagram of the counter program described in the

procedure.

5.) Written program description of state machine as described in part 5 of the procedure.

Spring 2015 14 Lab2_ET438B.docx

 Appendix

 Figure A-1. Configuration of a Hardware 7-Segment Display.

